import nltk #import feedparser #import wikipedia from duckduckpy import query import random #https://jcutrer.com/howto/dev/python/python-tutorial-howto-parse-rss-headlines #feed = feedparser.parse('http://feeds.feedburner.com/time/scienceandhealth?format=xml') #print(feed['title'][0]) #print(feed['feed']['title'][0]) #print (type(feed)) sentence = "Encoded inside a microchip are the patterns of my fingertips" print('\n') print(sentence) tokens = nltk.word_tokenize(sentence) words = [] for word, pos in nltk.pos_tag(tokens): if pos == 'NN': words.append(word) print('\n') print(words) list_len = len(words) ran_num = random.randint(0,list_len-1) print(ran_num) res = query(words[ran_num], container='dict') print('\n\t' + res['related_topics'][0]['text']) tokens = nltk.word_tokenize(res['related_topics'][0]['text']) words = [] for word, pos in nltk.pos_tag(tokens): if pos == 'NN': words.append(word) print('\n') print(words) list_len = len(words) ran_num = random.randint(0,list_len-1) print(ran_num) res = query(words[ran_num], container='dict') print('\n\t\t' + res['related_topics'][0]['text']) tokens = nltk.word_tokenize(res['related_topics'][0]['text']) words = [] for word, pos in nltk.pos_tag(tokens): if pos == 'NN': words.append(word) print('\n') print(words) list_len = len(words) ran_num = random.randint(0,list_len-1) print(ran_num) res = query(words[ran_num], container='dict') print('\n\t\t\t' + res['related_topics'][0]['text'])